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Abstract. The European manufacturing industry faces growing pressure to
reduce CO: emissions while maintaining competitiveness. Digital transformation
presents opportunities to improve ecological and economic sustainability via
advanced tools for product design and production. However, existing digital
solutions often neglect environmental aspects or depend on data and models with
high uncertainty and low explainability, limiting user acceptance. This paper
proposes a novel framework including an innovative Decision Support Tool to
help product designers and production planners predict energy and material
consumption, CO:2 emissions, and related costs across the product lifecycle. This
paper discusses the key elements of the Decision Support Tool, which integrates
hybrid models combining knowledge-driven and Al-driven methods to enhance
prediction accuracy and interpretability along with advanced visualization to
improve model transparency and user trust. This work highlights critical research
gaps and outlines directions for developing a user-centered Decision Support
Tool for sustainable product design and production.
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1 Introduction

Europe’s manufacturing sector is under significant pressure to reduce CO: emissions
[1, 2]. One potential solution lies in digital transformation, which can improve both
ecological and economic performance by leveraging digital tools for sustainable
product design and production [3, 4]. Despite this potential, ecological considerations
are still rarely integrated—primarily due to the lack of tools that can reliably predict a
product’s energy consumption across the entire product lifecycle. Consequently,
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ecological sustainability is often assessed only late in the design phase or even
retrospectively [5]. To address this gap, this paper presents a framework for a digital
Decision Support Tool and outlines essential research directions to enable future work
in the field of digital supported, sustainability-oriented product design and
manufacturing.

2 State of the Art

Currently available digital tools in the product creation process focus on technical
but often neglect environmental sustainability [6]. Additionally, these tools are often
based on data and models with high uncertainty and limited explainability [7].
Furthermore, despite 74% of manufacturers believing that such digital tools are
valuable for employees, they often lack user friendliness and model explainability,
leading to insufficient user acceptance [8].

This issue can be mitigated by using visualization techniques for data and models
with high uncertainty and limited explainability [9] and post-hoc interpretation methods
[10], such as data flow graphs [11][12] or node-link diagrams [13][14]. These methods
enhance explainability and, when combined with a comprehensible decision framework
and a user-centric design, can increase user acceptance [8][15][16]. Furthermore,
visualizations are playing an increasingly important role in user acceptance of data and
models through explaining high-dimensional data and artificial-intelligence-driven
models (AIDMs) [17][18][19]. These AIDMs typically require a multitude of
parameters and decisions regarding the training data, making it difficult for users to
understand the results, especially with large and complex models and data [20][21].
Visualizations support tasks such as data exploration, hypothesis generation, visual
communication of analysis results, and the selection of appropriate training data and
parameters for AIDMs. They also help in gaining an overview of large data,
interactively exploring details, and recognizing patterns [22]. Current research
integrates data analysis and AIDMs with interactive data and model visualization to
involve users and their expertise [17]. This approach is demonstrated in many
promising examples for prediction, classification, and understanding relationships in
complex data [21]. It has further been shown that visualizations revealing relevant
information about AIDM decision-making increase user acceptance and trust [23].
However, interactive visualization techniques for hybrid models to predict energy and
material/waste consumption based on product design and production data have not yet
been applied [24][25][26][27].

Models for predicting energy and material/waste consumption, associated CO-
emissions and costs can be built from first principles, from data, or a combination of
both [28][29][30][31]. First principles based on knowledge-driven models (KDMs) are
prevalent but often suffer from inaccurate or imprecise predictions [32][33]. AIDMs
are an alternative to KDMs that have been tested in many instances [34]. However,
AIDMs are not silver bullets and often fail due to insufficient labelled training data
[35][36]. Furthermore, AIDMs are prone to suffer from the issues that energy and
material consumption data exhibit, namely quality issues [37][38][39][40][41],



inaccuracies [42][43] and outliers, biases/distortions or missing data. A promising way
forward is the combination of KDMs and AIDMs to create hybrid models, i.e. models
that have a knowledge- and an Al-driven part [44]. Hybrid modeling has demonstrated
its ability to address data-related challenges [45] in areas such as power grids and
building operations [46][47]. However, further research is needed to apply these
techniques to production systems [44], ensuring that models remain interpretable by
users [48][49].

3 Research Gap

To conclude from the state of the art above, current research reveals several critical
gaps in the integration of digital tools within the product creation process. First, there
is a lack of tools in the product creation process that effectively combine technical
functionality with environmental sustainability, especially in the presence of uncertain
and poorly explainable data and models. Second, although visualization techniques
have shown promise in improving the explainability and user acceptance of AIDMs,
their application in hybrid models—particularly those predicting energy and material
consumption based on product and production data—remains largely unexplored.
Third, while hybrid models that combine KDMs and AIDMs offer potential to
overcome data quality issues, further research is needed to ensure these models remain
interpretable and trustworthy for users in production environments.

4 Requirements for a Future Decision Support Tool

Pioneering a change by creating a Decision Support Tool (DST) can help product
designers and production planners predict the energy and material/waste consumption,
CO: emissions and costs associated with their decisions. This tool must be embedded
in the product design and production process to create a consistent, precise, digital, and
user-centered solution and demonstrate increased sustainability.

The key requirements of a future DST comprise a user-centered decision-making
framework, interactive visualization of data and models, and hybrid modeling
approaches. These components are illustrated in Fig. 1 and elaborated in the following
sections.

The target group of the novel DST comprises stakeholders involved in the product
creation process, primarily product designers and production planners. Their data—
namely product design data and production data—serve as the foundational input and
are subsequently used for hybrid modeling.

4.1 Hybrid Models

A future DST must combine the advantages of KDMs and AIDMs for material and
energy consumption prediction with a new hybrid model based on the following pillars:
First, the most promising KDMs (in terms of precision, accuracy and application range
etc.) must be selected from the existing ones. Second, the most promising AIDMs (in



terms of implementability, controllability and explainability, stability, robustness, and
convergence, required quantity of data, etc.) should be trained on real world data that
have been disaggregated using Al into product and production -specific parts. Third,
visualization techniques should be used to derive additional parameters from the
collected data to improve the KDMs, but also to increase the explainability of the
AIDMs and hybrid models, thus fostering the acceptance by domain experts using these
models. These hybrid models will excel in predicting quality, surpassing KDMs in
terms of prediction quality, while at the same time outperforming AIDMs in training
data requirements, complexity, and prediction quality.
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Fig. 1. User-centered decision-making framework, interactive visualization of data and
models, and hybrid modeling approaches as key requirements for a Decision Support Tool.



4.2 Interactive Data and Model Visualization

Novel explorative and confirmative visualization techniques must support
explainability, promote trust and support the derivation of influencing factors and
additional relevant variables on energy and material/waste consumption data for
product design and production from AIDMs and hybrid models. This enables effective
decision support for both product/production experts and users (product designer and
production planner), e.g. by what-if-analyses, and will improve resource-conscious
decision making. A future DST must apply appropriate user-centered designs to create
and evaluate the effectiveness of our visualization components. The key stone lies in
the application of explorative and confirmative visualization techniques for data on
energy and material/waste consumption, associated CO emissions and costs, as well
as KDMs and AIDMs, and their integration into the DST. This could be done through
a monitoring dashboard that visualizes key metrics for the design of a product and its
production, providing a range of tools to help users make more sustainable design and
production decisions.

4.3  User-centered Decision Support Tool

A DST for product designers and production planners as users must show how the
sustainability of products (energy and material/waste consumption, associated CO;
emissions and costs) changes by varying various parameters such as material, machine
strategies, etc., considering essential framework conditions, and making appropriate
suggestions through what-if analyses of design and production alternatives. A key
component of a DST is a basic decision framework, which contains appropriate
decision and prioritization rules, considers company-specific framework conditions
regarding material selection, processing steps, among others but also considers different
types of users and their specific knowledge. The key stone is to create a comprehensive
decision framework for sustainable product design and production and to integrate it
together with accurate, precise and explainable data and hybrid models into a DST, thus
improving user acceptance and supporting sustainability in the product creation
process.

5 Solution Approach within the Project REDUCE

The aforementioned requirements serve as basis for the research project REDUCE
(01.03.2025 —28.02.2028) which will develop such a DST. Creating a DST for product
designers and production planners will decrease energy and material/waste
consumption and the associated CO, emissions and costs. The required approach is
depicted in Fig. 2.
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Fig. 2. Approach to create a Decision Support Tool within the project REDUCE.

First, accurate, precise and explainable data and models for energy and
material/waste consumption must be created: Existing data and models must be
evaluated in terms of quality, explainability and usability, and their respective potential
for improvement. The most suitable data and models will then serve as a starting point
for the development. The approach to creating hybrid models consists of interweaving
KDMs and AIDMs: both are optimized through more accurate and precise
disaggregated data. For AIDMs, also additional relevant parameters are used, and
explicit rules are considered (Genl models), all of which are explored using
visualization techniques. With the help of these visualization techniques, both data and
Genl models are illustrated, and new independent parameters are derived, which are
incorporated into the models, thus creating improved data and Gen2 models. Each
iteration step / model generation is evaluated to clearly quantify the improvements. In
addition, visualization components of data and models are developed, which serve as a
major basis for the DST.

Second, accurate and precise data, models, and visualizations are incorporated into
the user-centered digital Decision Support Tool. For this purpose, a comprehensive
decision framework with rules for balancing relevant factors (e.g. energy reduction vs.
cost efficiency) in product design and production, including interactive data and model
visualization, will be developed. Besides this framework, the DST will include accurate
and precise data, hybrid models and visualization components to help product designers
and production planners understand the impact of their decisions. The DST will be
developed and optimized in close coordination with users from two manufacturers from
the plastics and metal industries. First results of the DST will be demonstrated already
in the year 2026.

6 Conclusion and Outlook

This paper outlined the current state of the art in digital tools for sustainable product
creationand highlighted gaps in research, particularly regarding the integration of
visualization techniques and model explainability. On this basis, a user-centered
decision-making framework was presented to derive the most important requirements
for a future digital DST. Based on these requirements, a workflow was developed to



serve as a guideline for development on hybrid models and interactive data and model
visualizations. These are essential for improving transparencyand increasing trust and
user acceptance. These activities have been carried out to date as part of the ongoing
REDUCE research project and will be further refined in the future.

Future work within REDUCE will focus on the practical implementation and
evaluation of the proposed concepts in industrial use cases. In particular, the
effectiveness of hybrid modeling and interactive visualization techniques will be
evaluated in real-world use-cases, with a special focus on their impact on decision
quality and user acceptance. Additionally, further developments aim to extend the
adaptability of the DST to various contexts within the product creation process, thereby
enabling more sustainable and informed decisions.
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