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Abstract. The European manufacturing industry faces growing pressure to 

reduce CO₂ emissions while maintaining competitiveness. Digital transformation 

presents opportunities to improve ecological and economic sustainability via 

advanced tools for product design and production. However, existing digital 

solutions often neglect environmental aspects or depend on data and models with 

high uncertainty and low explainability, limiting user acceptance. This paper 

proposes a novel framework including an innovative Decision Support Tool to 

help product designers and production planners predict energy and material 

consumption, CO₂ emissions, and related costs across the product lifecycle. This 

paper discusses the key elements of the Decision Support Tool, which integrates 

hybrid models combining knowledge-driven and AI-driven methods to enhance 

prediction accuracy and interpretability along with advanced visualization to 

improve model transparency and user trust. This work highlights critical research 

gaps and outlines directions for developing a user-centered Decision Support 

Tool for sustainable product design and production. 

Keywords: Decision Support Tool (DST), Hybrid Modeling, Visualization 
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1 Introduction 

Europe’s manufacturing sector is under significant pressure to reduce CO₂ emissions 

[1, 2]. One potential solution lies in digital transformation, which can improve both 

ecological and economic performance by leveraging digital tools for sustainable 

product design and production [3, 4]. Despite this potential, ecological considerations 

are still rarely integrated—primarily due to the lack of tools that can reliably predict a 

product’s energy consumption across the entire product lifecycle. Consequently, 

https://www.google.com/maps/place/data=!4m2!3m1!1s0x476e35002e83b9d9:0xb891991687c291ca?sa=X&ved=1t:8290&ictx=111
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ecological sustainability is often assessed only late in the design phase or even 

retrospectively [5]. To address this gap, this paper presents a framework for a digital 

Decision Support Tool and outlines essential research directions to enable future work 

in the field of digital supported, sustainability-oriented product design and 

manufacturing. 

2 State of the Art 

Currently available digital tools in the product creation process focus on technical 

but often neglect environmental sustainability [6]. Additionally, these tools are often 

based on data and models with high uncertainty and limited explainability [7]. 

Furthermore, despite 74% of manufacturers believing that such digital tools are 

valuable for employees, they often lack user friendliness and model explainability, 

leading to insufficient user acceptance [8].  

This issue can be mitigated by using visualization techniques for data and models 

with high uncertainty and limited explainability [9] and post-hoc interpretation methods 

[10], such as data flow graphs [11][12] or node-link diagrams [13][14]. These methods 

enhance explainability and, when combined with a comprehensible decision framework 

and a user-centric design, can increase user acceptance [8][15][16]. Furthermore, 

visualizations are playing an increasingly important role in user acceptance of data and 

models through explaining high-dimensional data and artificial-intelligence-driven 

models (AIDMs) [17][18][19]. These AIDMs typically require a multitude of 

parameters and decisions regarding the training data, making it difficult for users to 

understand the results, especially with large and complex models and data [20][21]. 

Visualizations support tasks such as data exploration, hypothesis generation, visual 

communication of analysis results, and the selection of appropriate training data and 

parameters for AIDMs. They also help in gaining an overview of large data, 

interactively exploring details, and recognizing patterns [22]. Current research 

integrates data analysis and AIDMs with interactive data and model visualization to 

involve users and their expertise [17]. This approach is demonstrated in many 

promising examples for prediction, classification, and understanding relationships in 

complex data [21]. It has further been shown that visualizations revealing relevant 

information about AIDM decision-making increase user acceptance and trust [23]. 

However, interactive visualization techniques for hybrid models to predict energy and 

material/waste consumption based on product design and production data have not yet 

been applied [24][25][26][27]. 

Models for predicting energy and material/waste consumption, associated CO₂ 

emissions and costs can be built from first principles, from data, or a combination of 

both [28][29][30][31]. First principles based on knowledge-driven models (KDMs) are 

prevalent but often suffer from inaccurate or imprecise predictions [32][33]. AIDMs 

are an alternative to KDMs that have been tested in many instances [34]. However, 

AIDMs are not silver bullets and often fail due to insufficient labelled training data 

[35][36]. Furthermore, AIDMs are prone to suffer from the issues that energy and 

material consumption data exhibit, namely quality issues [37][38][39][40][41], 
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inaccuracies [42][43] and outliers, biases/distortions or missing data. A promising way 

forward is the combination of KDMs and AIDMs to create hybrid models, i.e. models 

that have a knowledge- and an AI-driven part [44]. Hybrid modeling has demonstrated 

its ability to address data-related challenges [45] in areas such as power grids and 

building operations [46][47]. However, further research is needed to apply these 

techniques to production systems [44], ensuring that models remain interpretable by 

users [48][49]. 

3 Research Gap 

To conclude from the state of the art above, current research reveals several critical 

gaps in the integration of digital tools within the product creation process. First, there 

is a lack of tools in the product creation process that effectively combine technical 

functionality with environmental sustainability, especially in the presence of uncertain 

and poorly explainable data and models. Second, although visualization techniques 

have shown promise in improving the explainability and user acceptance of AIDMs, 

their application in hybrid models—particularly those predicting energy and material 

consumption based on product and production data—remains largely unexplored. 

Third, while hybrid models that combine KDMs and AIDMs offer potential to 

overcome data quality issues, further research is needed to ensure these models remain 

interpretable and trustworthy for users in production environments. 

4 Requirements for a Future Decision Support Tool 

Pioneering a change by creating a Decision Support Tool (DST) can help product 

designers and production planners predict the energy and material/waste consumption, 

CO₂ emissions and costs associated with their decisions. This tool must be embedded 

in the product design and production process to create a consistent, precise, digital, and 

user-centered solution and demonstrate increased sustainability. 

The key requirements of a future DST comprise a user-centered decision-making 

framework, interactive visualization of data and models, and hybrid modeling 

approaches. These components are illustrated in Fig. 1 and elaborated in the following 

sections. 

The target group of the novel DST comprises stakeholders involved in the product 

creation process, primarily product designers and production planners. Their data—

namely product design data and production data—serve as the foundational input and 

are subsequently used for hybrid modeling. 

 

4.1 Hybrid Models 

A future DST must combine the advantages of KDMs and AIDMs for material and 

energy consumption prediction with a new hybrid model based on the following pillars: 

First, the most promising KDMs (in terms of precision, accuracy and application range 

etc.) must be selected from the existing ones. Second, the most promising AIDMs (in 
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terms of implementability, controllability and explainability, stability, robustness, and 

convergence, required quantity of data, etc.) should be trained on real world data that 

have been disaggregated using AI into product and production -specific parts. Third, 

visualization techniques should be used to derive additional parameters from the 

collected data to improve the KDMs, but also to increase the explainability of the 

AIDMs and hybrid models, thus fostering the acceptance by domain experts using these 

models. These hybrid models will excel in predicting quality, surpassing KDMs in 

terms of prediction quality, while at the same time outperforming AIDMs in training 

data requirements, complexity, and prediction quality. 

 

Fig. 1. User-centered decision-making framework, interactive visualization of data and 

models, and hybrid modeling approaches as key requirements for a Decision Support Tool. 
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4.2 Interactive Data and Model Visualization 

Novel explorative and confirmative visualization techniques must support 

explainability, promote trust and support the derivation of influencing factors and 

additional relevant variables on energy and material/waste consumption data for 

product design and production from AIDMs and hybrid models. This enables effective 

decision support for both product/production experts and users (product designer and 

production planner), e.g. by what-if-analyses, and will improve resource-conscious 

decision making. A future DST must apply appropriate user-centered designs to create 

and evaluate the effectiveness of our visualization components. The key stone lies in 

the application of explorative and confirmative visualization techniques for data on 

energy and material/waste consumption, associated CO2 emissions and costs, as well 

as KDMs and AIDMs, and their integration into the DST. This could be done through 

a monitoring dashboard that visualizes key metrics for the design of a product and its 

production, providing a range of tools to help users make more sustainable design and 

production decisions. 

 

4.3 User-centered Decision Support Tool  

A DST for product designers and production planners as users must show how the 

sustainability of products (energy and material/waste consumption, associated CO2 

emissions and costs) changes by varying various parameters such as material, machine 

strategies, etc., considering essential framework conditions, and making appropriate 

suggestions through what-if analyses of design and production alternatives. A key 

component of a DST is a basic decision framework, which contains appropriate 

decision and prioritization rules, considers company-specific framework conditions 

regarding material selection, processing steps, among others but also considers different 

types of users and their specific knowledge. The key stone is to create a comprehensive 

decision framework for sustainable product design and production and to integrate it 

together with accurate, precise and explainable data and hybrid models into a DST, thus 

improving user acceptance and supporting sustainability in the product creation 

process. 

5 Solution Approach within the Project REDUCE 

The aforementioned requirements serve as basis for the research project REDUCE 

(01.03.2025 – 28.02.2028) which will develop such a DST. Creating a DST for product 

designers and production planners will decrease energy and material/waste 

consumption and the associated CO2 emissions and costs. The required approach is 

depicted in Fig. 2. 
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Fig. 2. Approach to create a Decision Support Tool within the project REDUCE. 

 

First, accurate, precise and explainable data and models for energy and 

material/waste consumption must be created: Existing data and models must be 

evaluated in terms of quality, explainability and usability, and their respective potential 

for improvement. The most suitable data and models will then serve as a starting point 

for the development. The approach to creating hybrid models consists of interweaving 

KDMs and AIDMs: both are optimized through more accurate and precise 

disaggregated data. For AIDMs, also additional relevant parameters are used, and 

explicit rules are considered (Gen1 models), all of which are explored using 

visualization techniques. With the help of these visualization techniques, both data and 

Gen1 models are illustrated, and new independent parameters are derived, which are 

incorporated into the models, thus creating improved data and Gen2 models. Each 

iteration step / model generation is evaluated to clearly quantify the improvements. In 

addition, visualization components of data and models are developed, which serve as a 

major basis for the DST. 

Second, accurate and precise data, models, and visualizations are incorporated into 

the user-centered digital Decision Support Tool. For this purpose, a comprehensive 

decision framework with rules for balancing relevant factors (e.g. energy reduction vs. 

cost efficiency) in product design and production, including interactive data and model 

visualization, will be developed. Besides this framework, the DST will include accurate 

and precise data, hybrid models and visualization components to help product designers 

and production planners understand the impact of their decisions. The DST will be 

developed and optimized in close coordination with users from two manufacturers from 

the plastics and metal industries. First results of the DST will be demonstrated already 

in the year 2026. 

6 Conclusion and Outlook 

This paper outlined the current state of the art in digital tools for sustainable product 

creationand highlighted gaps in research, particularly regarding the integration of 

visualization techniques and model explainability. On this basis, a user-centered 

decision-making framework was presented to derive the most important requirements 

for a future digital DST. Based on these requirements, a workflow was developed to 



7 

   

 

serve as a guideline for development on hybrid models and interactive data and model 

visualizations. These are essential for improving transparencyand increasing trust and 

user acceptance. These activities have been carried out to date as part of the  ongoing 

REDUCE research project and will be further refined in the future. 

Future work within REDUCE will focus on the practical implementation and 

evaluation of the proposed concepts in industrial use cases. In particular, the 

effectiveness of hybrid modeling and interactive visualization techniques will be 

evaluated in real-world use-cases, with a special focus on their impact on decision 

quality and user acceptance. Additionally, further developments aim to extend the 

adaptability of the DST to various contexts within the product creation process, thereby 

enabling more sustainable and informed decisions. 
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